The Twitter Times – a real-time personalized newspaper!
From the massive volume of daily news the most interesting items are those that are actively discussed by people you follow: your friends, respected/famous persons and celebrities you admire. This is the most effective filter. We have built The Twitter Times – a newspaper constructed for you in real time based on the news discussed in your Twitter community (i.e. people you follow on Twitter and their followees). The Twitter Times provides you with a new effective way to comprehend news on a daily, or even hourly, basis.
Here are the main features of The Twitter Times:
- Real-time – based on your real-time Twitter stream.
- Personalized – we identify important news items posted by people in your Twitter community and rank those items with respect to their recency and popularity among your followees. It is essentially different from existing services such as tweetmeme.com и digg.com which are based on global popularity.

- Media-rich – we extract news content so that you can read the text of news, watch videos and photos in your newspaper, all in one place.
What is also interesting about The Twitter Times:
- The Twitter Times helps you extend your community and find like-minded people – for every news article we display who posted it not only from the 1st, but also from the 2nd circle of your friends (the people followed by your followees). Discover and follow more people you like.
- It helps you to become more engaged in your community – you can propogate news in your community by retweeting (green retweet button under every news article). Build up your authority in the community by posting more.

- You can read other user’s newspaper (e.g. famous people, for example, Esther Dyson – http://www.twittertim.es/edyson) and construct your own newspaper.
Towards Stream Personalization Powered by Twitter
Current practice of dealing with streams is common for all applications. The user subscribes to sources (such as news or blog feeds) or followees (e.g. in Twitter, FriendFeed) and read the stream made up of posts from the sources/followees. The problem with this approach is that there is always a compromise with the number of sources/followees that the user would like to read and the amount of information he/she is able to consume. I am sure that many of you know this problem. Even if you subscribe to, say, 30 blogs you cannot even look though all of the posts especially if there are some “top” blogs that usually issue up to 20 posts in a day. As the result you get hundreds of unread posts in just one week.
The solution to this problem is a personalized stream that contains only a moderate number of posts that are potentially interesting for the user. It sounds good but stream personalization systems do not reach wide adoption. I think that the problem of the systems is not poor algorithms they utilize but wrong assumptions they are based on. Modern personalization systems assume that the user has already formed his interests. So the system tries to identify user’s interests and then use this information to bring relevant posts via content match or collaborative filtering. The idea of building a system around user’s interests seems wrong. First of all I am sure that majority of people don’t have any formed interests. People read streams to know significant news, to identify new trends or just want to have fun. It explains why voting/commenting social news sites (e.g. Digg, Reddit) which rank news by absolute popularity without any personalization are quite popular. Even if the user has some concrete interests, posts about these interests usually make up small fraction of the user’s whole media consumption. For example, I am currently interested in semantic search because we are working on such system. But news on semantic search are quite rare and anyway I would not like to read only about semantic search stuff every day. So focusing on user’s interests is very limiting. Systems which utilize collaborative filtering try to go beyond immediate user’s interests and recommend posts that are read by other people who has similar interests. But it is not useful also as it often recommends very diverse topics and it is more about research of what people interested in particular topic also read then about what might be interesting for me. Besides being limited modern personalization systems fail to explain why they recommend this or that post to the user. It is because content match and collaborative filtering are based on statistical aggregation the result of which is hard to explain. The user have to do non-trivial interpretation and maybe even additional research to understand what recommended posts are about while the system does not provide any evidence why the user should do the effort.
So user’s interests are fluid, diverse and hard to grasp. Trying to build something around user’s interests in automatic way is in vain. To become successful personalization systems should rethink their fundamental assumption. I think that personalization system should stop trying to capture user’s interests and focus on what inspires them. The causes of user’s interests are easy to list. People usually find something interesting and worth reading in two main cases. First, it is something that is very popular, widely discussed and lead to universal resonance – trending topics. Note that it might be absolutely unrelated to the user’s interests. For example, swine flu does not touch me at all but I might be interested to know that it happens not to look like a fool among my friends who are well-informed about current global issues. Second, it is something that is inspired by people that the user knows and respects – what is hot in the user’s community. It is more likely to match immediate user’s interests but not necessarily because the user would usually like to know about all important events in his/her community. This new approach to personalization is more social than that based on user’s interests and social approaches prove to be effective for many tasks. Another advantage of the approach is that it allows explaining to the user why we recommend this post and the user should spend his/her time reading it. We need just say that too many people have posted links to it (in case of global trending topic) or that one or more influential people from the user’s community have posted/liked it.
Several years ago we cannot build a personalized user stream based on these considerations. Now, thinks to recent development and high popularity of public micro-blogging systems, we can collect enough information to identify global and in-community trending topics. Public micro-blogging systems can be used as a ranking system to identify significant posts for personalized streams. Global trending topics are already identified by a number of services (e.g. tweetmeme.com) which analyze Twitter, etc. Let me describe how I see it could work for in-community trending topics. The user’s community is defined by a list of favorite sources that the user is subscribed to or regularly visits (e.g. user’s favorite blogs, news sites and his/her friend’s feeds) and a list of followees on services like Twitter or FriendFeed. As I already mentioned above many of us cannot even look through all the posts from these sources and followees but would like not to miss important news, ideas, etc. The user’s personalized stream should include significant posts from the favorite sources and the most posted/retweeted/favorite’ed/liked links to articles/pages/posts among the user’s followees. The significant posts from the favorite sources can be identified as follows. Select those post from a source which global popularity (i.e. among all users of Twitter/FriendFeed, not only user’s followees) are greater than the average for all posts of this source. It means to select all posts from a source which causes some resonance and skip the others. As concerns the most posted/etc links among followees, they represent significant in-community trending topics. They can include links to posts from the favorite sources (for such links followees contribute to their global popularity, maybe with greater weight) or links to other sources that help to introduce the user to something new. You can find some technical details on how we identify significant posts in Twitter here.
Social Browsers: Only Half Way There
- Show real-time updates from various social apps (e.g. social networks, email applications, RSS feeds, etc). For example, RoamAbout has a toolbar at the bottom of the screen with which you can get custom tailored updates from friends of your Facebook network, tweets from people you follow on Twitter, RSS feeds from your favorite blogs and news sites, and notifications when you get an email in your Gmail inbox. And you can get these non-intrusive updates while browsing on any web page. It eliminates the need to constantly switch to different tabs to check email, updates, and tweets.
- Submit information from the current Web page to social apps. For example, with Flock you can drag and drop any picture from the current web page to Facebook app to share it. In RoamAbout it can be done by launching an application in the context of the web page you are on, or in the context of a word highlighted on the web page. For example, you can highlight a phase on the Web page and then launch Twitter app to post it on Twitter.
Длинный хвост
Я решил описать концепцию, которая произвела на меня наибольшее впечатление в 2006 году. Это феномен Длинного хвоста (long tail) в контексте Интернет бизнес моделей.
В общем феномен длинного хвоста можно описать следующим образом: маловостребованные вещи (или малозначительные события) в сумме являются более востребованными (или дают больший эффект), чем популярные вещи (или значительные события). Для того, чтобы понять откуда взялся термин длинных хвост, посмотрите на график и представьте, что это распределение востребованности вещей, упорядоченных в порядке убывания востребованности. Мало востребованные вещи образуют длинный хвост, интеграл по которому, может быть больше чем по востребованным вещам. В контексте бизнеса это означает, например, следующие: в сумме небестселлеров продают больше, чем бестселлеров. Таким образом, если суметь собрать достаточно большое число маловостребованных товаров (то есть построит из них длинный хвост), то это может дать существенный экономический эффект. В контексте создания бизнес моделей феномен длинного хвоста был впервые рассмотрен Крисом Андерсоном (Chris Anderson) в публикации в журнале Wired в 2004. Несколько месяцев назад он же написал книгу, посвященную анализу этого феномена.
Построение длинного хвоста стало возможным, главным образом, благодаря широкому распространению Интернет, поскольку Интернет снимает многие физические ограничения. Например, в реальном книжном магазине можно продавать только бестселлеры, поскольку существую объективные физические ограничения на размер книжных полок, в то время как Интернет магазин не имеет таких ограничений и может предлагать сколь угодно широкий ассортимент. Наиболее часто обсуждаемым примером (экономически) успешного построения длинного хвоста является Интернет-магазин Amazon. Известно, что около половины дохода эта компания получает от реализации продуктов из длинного хвоста. Другим знаковым примером является рекламные программы компании Google (такие как adword и adsense). Эти программы позволяют большому числу мелких рекламодателей (для которых реклама в традиционных средствах массовой информации, таких как телевидение, газеты и журналы, была практически недоступна) проводить свои рекламные компании в Интернет. То есть опять же, традиционные средства массовой информации имеют физические ограничения эфирного времени или максимально допустимого числа страниц, которые намного менее существенны в Интернет. А, кроме того, цена доставки информации до конечного потребителя существенно ниже для Интернет-компаний, чем для традиционных масс медиа.
Возможность построения длинного хвоста при помощи Интернет является новой возможностью, которая, как кажется, еще не исчерпана и может быть реализована во многих областях.
Amazon развивает новое направление бизнеса: продажа web-сервисов
В последнем номере BusinessWeek появилась публикация о планах amazon.com по крупномаштабному развитию одного из направлений своего бизнеса: продажа сервисов, построенных на основе внутренней технологической платформы компании. Amazon.com в течении последних 12 лет активно работал над созданием технологической платформы для ведения своего бизнеса – крупнейшего в мире интернет магазина. Эта платформа включает большое число компонент поддерживающих распределенные вычисления, хранение больших объемов данных и т.д., а также миллионы строк кода по координации совместной работы этих компонент. Amazon создает сервисы уже в течении нескольких лет (aws.amazon.com), но теперь основатель компании Jeff Bezos планирует сделать продажу сервисов одним из основных правлений деятельности на ровне с поддежкой интерент магазина.
На бизнес BusinessWeek есть также интервью с Jeff Bezos на эту тему. В этом интервью Jeff говорит:
We’re trying to leverage an existing asset … We cannot operate our consumer business without these pieces of Web-scale infrastructure.
We have three businesses today … consumer-facing … seller-facing … developer-facing. The first two businesses are already financially meaningful businesses for Amazon.com, and we believe the third one can be too.
Мне кажется, что эта новость подтверждает общую тенденцию: все больше возрастающая роль развитых платформ масштаба интернет. Сегодня многие говорят о том, что в области web-приложений обладание мощной платформой является основым конкурентным преимуществом. Например, считается, что основная мощь Google заключается в ее платформе, построенной на MapReduce, Google File System и т.д., и даже алгоритмы поиска играют второстепенную роль в успехе компании.
Однако, многие комментаторы ставят под сомнение возможности Amazon преуспеть в этом направлении: безусловно Аmazon обладает одной из самых передовых платформ, которая возволяет решать множество внутренних задач, но сумеют ли они построить над этой платформой сервисы для внешних пользователей?